

py-fromjson

[image: _images/py-fromjson.png]
 [http://badge.fury.io/py/py-fromjson][image: _images/py-fromjson1.png]
 [https://travis-ci.org/kaction/py-fromjson]Parse dataclasses from unstructured JSON in Python3.

Rationale

The most common format for client to send data to server is JSON,
and all Python web framework way to access request body as nested
dictionaries of primitive values. Problem is that programmer is supposed
to thorously validate input data, or bad input can cause request handler
to throw exception and return http code 500 instead of 400.

Let us consider quite typical setup – Sanic web framework and aiopg
library and very trivial example of application that returns author of
the book identified by title and publishment year, year is optional.

@app.route("/book", methods=["GET"])
def return_book_author(request):
 title = request.args["title"]
 year = request.args.get("year")

 with (await request.app.pool.cursor()) as cursor:
 cursor.execute("""
 SELECT author FROM books
 WHERE title = %s AND year = COALESCE(%s, year)
 """, [title, year])
 authors = [row[0] for row in (await cursor.fetchall())]
 return json(authors)

A lot of things can go wrong with this code. Client may not have send
title parameter, or may have sent it of wrong type. Parameter
year can also be of wrong type. It is not disaster, but database
will throw error, which in turn will result in http code 500. Every
time frontend developers see 5xx, they rightfully assume that it is
not their fault, and bug backend developer. To avoid such unfortunate
consequences, types must be thorously checked:

@app.route("/book", methods=["GET"])
def return_book_author(request):
 title = request.args.get("title")
 year = request.args.get("year")

 if type(title) is not str:
 return text("Bad type of parameter `title', must be string", 400)
 if year is not None and type(year) is not int:
 return text("Bad type of parameter `year', must be int or absent", 400)

 with (await request.app.pool.cursor()) as cursor:
 cursor.execute("""
 SELECT author FROM books
 WHERE title = %s AND year = COALESCE(%s, year)
 """, [title, year])
 authors = [row[0] for row in (await cursor.fetchall())]
 return json(authors)

It happens to work, but does not scale. With more parameters to check
and more time pressure applied, programmer will skip some checks and
will assume happy path. It will backfire, no exceptions.

This library provides much simpler way to do required parsing and
checking:

from dataclasses import dataclass
import typing
import fromjson

@fromjson.derive
@dataclass
class BookRequest:
 title: str
 year: typing.Optional[int]

@app.route("/book", methods=["GET"])
def return_book_author(request):
 try:
 book = BookRequest.fromjson(request.args)
 except ValueError as e:
 return text(str(e), 400)

 with (await request.app.pool.cursor()) as cursor:
 cursor.execute("""
 SELECT author FROM books
 WHERE title = %s AND year = COALESCE(%s, year)
 """, [book.title, book.year])
 authors = [row[0] for row in (await cursor.fetchall())]
 return json(authors)

That’s it. If fromjson method did not throw exception, code after it
can be sure that title field is string, and year field is either
integer or None.

This library is heavily inspired by Haskell type system and following
Haskell libraries in particular:

	aeson

	refined

	servant

If you have choice, you should just use haskell. It you, like me, is
stuck with Python, read on to learn how you can use py-fromjson
library to make your code more correct and safe.

https://hackage.haskell.org/package/aeson-1.5.3.0/docs/Data-Aeson.html#t:FromJSON

Contents:

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2020-08-02)

Feedback

If you have any suggestions or questions about py-fromjson feel free to email me
at KAction@disroot.org.

If you encounter any errors or problems with py-fromjson, please let me know!
Open an Issue at the GitHub http://github.com/kaction/py-fromjson main repository.

Installation

At the command line either via easy_install or pip:

$ easy_install py-fromjson
$ pip install py-fromjson

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv py-fromjson
$ pip install py-fromjson

Usage

To use py-fromjson in a project:

import fromjson

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/kaction/py-fromjson/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

py-fromjson could always use more documentation, whether as part of the
official py-fromjson docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/kaction/py-fromjson/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up py-fromjson for
local development.

	Fork [https://github.com/kaction/py-fromjson/fork] the py-fromjson repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/py-fromjson.git

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass style and unit
tests, including testing other Python versions with tox:

$ tox

To get tox, just pip install it.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy.
Check https://travis-ci.org/kaction/py-fromjson
under pull requests for active pull requests or run the tox command and
make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test test/test_py-fromjson.py

Credits

Development Lead

	Dmitry Bogatov <KAction@disroot.org>

Contributors

None yet. Why not be the first?

History

0.1.0 (2020-08-02)

	First release on PyPI.

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fromjson	

 	
 	
 fromjson.fromjson	

Index

 F

F

 	
 	fromjson (module)

 	
 	fromjson.fromjson (module)

fromjson package

Submodules

fromjson.fromjson module

Module contents

fromjson

	fromjson package
	Submodules

	fromjson.fromjson module

	Module contents

 _static/ajax-loader.gif

_images/py-fromjson.png
Ppypi package 227

_images/py-fromjson1.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 py-fromjson

 		
 Installation

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2020-08-02)

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

